3. Menczer J. Diagnosis and treatment delay in gynecological malignancies. Does it affect outcome? Int J Gynecol Cancer 2000;10:89-94.
6. Hornyak GL, Moore JJ, Tibbals HF, Dutta J. Fundamentals of nanotechnology. 1st ed. Boca Raton: CRC press; 2018.
7. Rao CNR, Cheetham AK. Science and technology of nanomaterials: current status and future prospects. J Mater Chem 2001;11:2887-94.
8. Gopal J, Wu HF, Gangaraju G. Quantifying the degradation of extracellular polysaccharides of Escherichia coli by CdS quantum dots. J Mater Chem 2011;21:13445-51.
9. MKhan MS, Gedda G, Gopal J, Wu HF. Probing the cytotoxicity of CdS-MPA and CdSe-MUA QDs on the bacterial pathogen Staphylococcus aureus using MALDI-MS. Analytical Methods 2014;6:5304-13.
10. Gedda G, Wu HF. Fabrication of surface modified ZnO nanorod array for MALDI-MS analysis of bacteria in a nanoliter droplet: a multiple function biochip. Sens Actuator B-Chem 2019;288:667-77.
11. Zulfajri M, Gedda G, Ulla H, Gollavelli G, Huang GG. A review on the chemical and biological sensing applications of silver/carbon dots nanocomposites with their interaction mechanisms. Adv Colloid Interface Sci 2024;325:103115.
12. Talib A, Khan MS, Gedda G, Wu HF. Stabilization of gold nanoparticles using natural plant gel: a greener step towards biological applications. J Mol Liq 2016;220:463-7.
13. Wang Y, Du W, Zhang T, Zhu Y, Ni Y, Wang C, et al. A self-evaluating photothermal therapeutic nanoparticle. ACS Nano 2020;14:9585-93.
14. Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, et al. Silica nanoparticles: biomedical applications and toxicity. Biomed Pharmacother 2022;151:113053.
15. Hassan SS, Kamel AH, Hashem HM, Bary EA. Drug delivery systems between metal, liposome, and polymer-based nanomedicine: a review. Eur Chem Bull 2020;9:91-102.
19. Ghosh S, Jayaram P, Kabekkodu SP, Satyamoorthy K. Targeted drug delivery in cervical cancer: current perspectives. Eur J Pharmacol 2022;917:174751.
20. Luo L, Zhou H, Wang S, Pang M, Zhang J, Hu Y, et al. The application of nanoparticle-based imaging and phototherapy for female reproductive organs diseases. Small 2024;20:e2207694.
21. Sánchez-Ramírez DR, Domínguez-Ríos R, Juárez J, Valdés M, Hassan N, Quintero-Ramos A, et al. Biodegradable photoresponsive nanoparticles for chemo-, photothermal- and photodynamic therapy of ovarian cancer. Mater Sci Eng C Mater Biol Appl 2020;116:111196.
22. Debnath M, Khan A, Keshari R, Banerjee A, Srivastava R. Impact of stimuli-responsive biomaterials in gynecological cancer therapy. Biomed Mater Devices 2024;2:655-68.
23. Kumar L, Pramanik R, Kumar S, Bhatla N, Malik S. Neoadjuvant chemotherapy in gynaecological cancers - implications for staging. Best Pract Res Clin Obstet Gynaecol 2015;29:790-801.
24. Cooke SL, Brenton JD. Evolution of platinum resistance in high-grade serous ovarian cancer. Lancet Oncol 2011;12:1169-74.
27. Markman M, Rothman R, Hakes T, Reichman B, Hoskins W, Rubin S, et al. Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J Clin Oncol 1991;9:389-93.
28. Marchetti C, De Felice F, Romito A, Iacobelli V, Sassu CM, Corrado G, et al. Chemotherapy resistance in epithelial ovarian cancer: mechanisms and emerging treatments. Semin Cancer Biol 2021;77:144-66.
29. Amaral MVS, DE Sousa Portilho AJ, DA Silva EL, DE Oliveira Sales L, DA Silva Maués JH, DE Moraes MEA, et al. Establishment of drug-resistant cell lines as a model in experimental oncology: a review. Anticancer Res 2019;39:6443-55.
31. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 1979;63:1727-33.
32. Wicki A, Mandalà M, Massi D, Taverna D, Tang H, Hemmings BA, et al. Acquired resistance to clinical cancer therapy: a twist in physiological signaling. Physiol Rev 2016;96:805-29.
38. Burdett NL, Willis MO, Alsop K, Hunt AL, Pandey A, Hamilton PT, et al. Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer. Nat Genet 2023;55:437-50.
39. Andrews PA, Howell SB. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer Cells 1990;2:35-43.
43. Lukanović D, Herzog M, Kobal B, Černe K. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer. Biomed Pharmacother 2020;129:110401.
44. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 2016;1863:2977-92.
48. Ishikawa T, Ali-Osman F. Glutathione-associated cisdiamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione-platinum complex and its biological significance. J Biol Chem 1993;268:20116-25.
50. Vemula S, Bonala S, Vadde NK, Natu JZ, Basha R, Vadde R, et al. Drug resistance and immunotherapy in gynecologic cancers. Life Sci 2023;332:122104.
51. Balch C, Matei DE, Huang TH, Nephew KP. Role of epigenomics in ovarian and endometrial cancers. Epigenomics 2010;2:419-47.
56. Korzun T, Moses AS, Diba P, Sattler AL, Olson B, Taratula OR, et al. Development and perspectives: multifunctional nucleic acid nanomedicines for treatment of gynecological cancers. Small 2024;20:e2301776.
57. Kanchi S, Sharotri N, Chokkareddy R, Sharma D, Hussein FH. Smart nanomaterials for infectious diseases. 1st ed. London: Royal Society of Chemistry; 2024.
59. Gu X, Wang C. Advancements in nano-immunotherapy for gynecological cancers: a new frontier. Biomed Pharmacother 2024;180:117553.
61. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013;113:1904-2074.
65. Cantillo E, Blanc-Durand F, Leary A, Slomovitz BM, Fuh K, Washington C. Updates in the use of targeted therapies for gynecologic cancers. Am Soc Clin Oncol Educ Book 2024;44:e438582.
66. Manchana T, Ittiwut C, Mutirangura A, Kavanagh JJ. Targeted therapies for rare gynaecological cancers. Lancet Oncol 2010;11:685-93.
66. Lai TS, Francoeur A, Manrriquez E, Venkat P, Chang A, Douek M, et al. Percutaneous interstitial brachytherapy ablation for targeting oligometastatic gynecologic cancers. Brachytherapy 2024;23:266-73.
67. Jin K, Zhang H, Yang Y, Gao Y. Nano-drug delivery systems based on biodegradable polymers for the therapy of gynecological malignancies. Int J Polym Mater Polym Biomater 2024;73:1262-77.
69. Chauhan B, Patel S, Prajapati BG, Singh S. Drug delivery for Alzheimer’s disease using nanotechnology: challenges and advancements. In: Prajapati BG, Chellappan DK, Kendre PN, editors. Alzheimer’s disease and advanced drug delivery strategies. 1st ed. Cambridge: Academic Press; 2024. p. 361-71.
70. Zubair M, Riaz M, Kiani MN, Aslam HM, Fatima AEZ, Sultan HM, et al. Application of nanotechnology for targeted drug delivery and nontoxicity. IJGPN 2024;2:57-67.
71. Manasa R, Shivananjappa M. Role of nanotechnology-based materials in drug delivery. In: Keservani RK, Kesharwani RK, Sharma AK, editors. Advances in novel formulations for drug delivery. 1st ed. Hoboken (NJ), Beverly (MA): John Wiley & Sons, Inc., ScrivenerPublishing LLC; 2023. p. 279-307.
72. Al-Thani AN, Jan AG, Abbas M, Geetha M, Sadasivuni KK. Nanoparticles in cancer theragnostic and drug delivery: a comprehensive review. Life Sci 2024;352:122899.
73. Bolla PK, Rodriguez VA, Kalhapure RS, Kolli CS, Andrews S, Renukuntla J. A review on pH and temperature responsive gels and other less explored drug delivery systems. J Drug Deliv Sci Technol 2018;46:416-35.
75. Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021;296:102509.
76. Gedda G, Pandey S, Khan MS, Talib A, Wu HF. Synthesis of mesoporous titanium oxide for release control and high efficiency drug delivery of vinorelbine bitartrate. RSC Adv 2016;6:13145-51.
77. Pandey S, Gedda GR, Thakur M, Bhaisare ML, Talib A, Khan MS, et al. Theranostic carbon dots ‘clathrate-like’nanostructures for targeted photo-chemotherapy and bioimaging of cancer. J Ind Eng Chem 2017;56:62-73.
78. Gedda G, Bhupathi A, Tiruveedhi VBG. Naturally derived carbon dots as bioimaging agents. In: Ziyad S, Ibrokhim Y, editors. Biomechanics and functional tissue engineering. 1st ed. London: IntechOpen; 2021. p. 1-23.
79. Yao YY, Gedda G, Girma WM, Yen CL, Ling YC, Chang JY. Magnetofluorescent carbon dots derived from crab shell for targeted dual-modality bioimaging and drug delivery. ACS Appl Mater Interfaces 2017;9:13887-99.
80. Chiu SH, Gedda G, Girma WM, Chen JK, Ling YC, Ghule AV, et al. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater 2016;46:151-64.
81. Dehvari K, Liu KY, Tseng PJ, Gedda G, Girma WM, Chang JY. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng 2019;95:495-503.
83. Gedda G, Chen GR, Yao YY, Girma WM, Li JD, Yen CL, et al. Aqueous synthesis of dual-targeting Gd-doped CuInS 2/ZnS quantum dots for cancer-specific bi-modal imaging. New J Chem 2017;41:14161-70.
84. Anarjan FS. Active targeting drug delivery nanocarriers: ligands. Nano-Struct Nano-Objects 2019;19:100370.
86. Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi-Shahri M. RGD peptide in cancer targeting: benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024;13:e6800.
88. Liang X, Yang Y, Huang C, Ye Z, Lai W, Luo J, et al. cRGD-targeted heparin nanoparticles for effective dual drug treatment of cisplatin-resistant ovarian cancer. J Control Release 2023;356:691-701.
89. Dodda JM, Remiš T, Rotimi S, Yeh YC. Progress in the drug encapsulation of poly(lactic-co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic-coglycolic acid) conjugates for selective cancer treatment. J Mater Chem B 2022;10:4127-41.
90. Liang C, Yang Y, Ling Y, Huang Y, Li T, Li X. Improved therapeutic effect of folate-decorated PLGA-PEG nanoparticles for endometrial carcinoma. Bioorg Med Chem 2011;19:4057-66.
91. Dana P, Bunthot S, Suktham K, Surassmo S, Yata T, Namdee K, et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces 2020;196:111270.
92. Oladimeji O, Akinyelu J, Singh M. Co-polymer functionalised gold nanoparticles show efficient mitochondrial targeted drug delivery in cervical carcinoma cells. J Biomed Nanotechnol 2020;16:853-66.
93. Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment. J Control Release 2020;328:251-62.
94. Wei W, Zhang X, Zhang S, Wei G, Su Z. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review. Mater Sci Eng C Mater Biol Appl 2019;104:109891.
95. Khan MS, Talib A, Pandey S, Bhaisare ML, Gedda G, Wu HF. Folic acid navigated silver selenide nanoparticles for photo-thermal ablation of cancer cells. Colloids Surf B Biointerfaces 2017;159:564-70.
96. Pandey S, Talib A, Mukeshchand Thakur M, Shahnawaz Khan M, Bhaisare ML, Gedda G, et al. Tellurium platinate nanowires for photothermal therapy of cancer cells. J Mater Chem B 2016;4:3713-20.
97. Zhang Y, Ang CY, Zhao Y. Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polym J 2016;48:589-603.
98. Zhang L, Chen S, Ma R, Zhu L, Yan T, Alimu G, et al. NIR-excitable PEG-modified au nanorods for photothermal therapy of cervical cancer. ACS Appl Nano Mater 2021;4:13060-70.
101. Yu H, He X, Zhou L, Chen L, Lu H, Wang J, et al. Exploring the potential of carbon-coated MoSe2 nanoparticles as a photothermal therapy for ovarian cancer. Arab J Chemy 2024;17:105495.
102. Liu B, Zhou J, Zhang B, Qu J. Synthesis of ag@ Fe
3O
4 nanoparticles for photothermal treatment of ovarian cancer. J Nanomater 2019;2019:6457968.
104. Jabir MS, Nayef UM, Abdulkadhim WK, Sulaiman GM. Supermagnetic Fe
3O
4-PEG nanoparticles combined with NIR laser and alternating magnetic field as potent anti-cancer agent against human ovarian cancer cells. Mater Res Express 2019;6:115412.
105. Chen W, Wang X, Zhao B, Zhang R, Xie Z, He Y, et al. CuS-MnS2 nano-flowers for magnetic resonance imaging guided photothermal/photodynamic therapy of ovarian cancer through necroptosis. Nanoscale 2019;11:12983-9.
107. Liu X, Yan S, Wu H, Chen M, Dai H, Wang Z, et al. Interventional hydrogel microsphere controlled‐releasing curcumin for photothermal therapy against endometriosis. Adv Funct Mater 2024;34:2315907.
112. Shapshay SM. Endoscopic laser surgery handbook. In: Dougherty TJ, editors. Photodynamic therapy. 1st ed. Boca Raton: CRC Press; 1987. p. 29.
113. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, et al. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018;106:1098-107.
114. Verger A, Brandhonneur N, Molard Y, Cordier S, Kowouvi K, Amela-Cortes M, et al. From molecules to nanovectors: current state of the art and applications of photosensitizers in photodynamic therapy. Int J Pharm 2021;604:120763.
116. Yu XT, Sui SY, He YX, Yu CH, Peng Q. Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomater Adv 2022;135:212725.
119. Verger A, Dollo G, Brandhonneur N, Martinais S, Cordier S, Lang K, et al. PEGylated poly (lactic-co-glycolic acid) nanoparticles doped with molybdenum-iodide nanoclusters as a promising photodynamic therapy agent against ovarian cancer. Mater Adv 2023;4:3207-14.