1. National Health Service (NHS). Annual report and accounts 2017/18. Leeds: NHS; 2018.
2. Warrick PA, Hamilton EF, Precup D, Kearney RE. Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans Biomed Eng 2010;57:771-9.
10. Yerlikaya G, Akolekar R, McPherson K, Syngelaki A, Nicolaides KH. Prediction of stillbirth from maternal demographic and pregnancy characteristics. Ultrasound Obstet Gynecol 2016;48:607-12.
11. Berry MJA, Linoff GS. Data mining techniques. 2nd ed. Indianapolis (IN): Wiley; 2004.
12. Han J, Micheline K. Data Mining: Concepts and Techniques. 2nd ed. San Francisco (CA): Elsevier; 2006.
13. Han J, Micheline K, Pei J. Data Mining: Concepts and Techniques. 3rd ed. San Francisco (CA): Elsevier; 2012.
14. Tan PN, Steinbach M, Karpatne A, Kumar V. Introduction to data mining. 2nd ed. London (UK): Pearson; 2018.
16. Song X, Mitnitski A, Cox J, Rockwood K. Comparison of machine learning techniques with classical statistical models in predicting health outcomes. Stud Health Technol Inform 2004;107(Pt 1):736-40.
17. Goodwin LK, Maher S. Data mining for preterm birth prediction. Como 2000;1:46-51.
18. Goodwin LK, Iannacchione MA, Hammond WE, Crockett P, Maher S, Schlitz K. Data mining methods find demographic predictors of preterm birth. Nurs Res 2001;50:340-5.
19. Goodwin LK, Iannacchione MA. Data mining methods for improving birth outcomes prediction. Outcomes Manag 2002;6:80-5.
24. Shin D, Song WO. Prepregnancy body mass index is an independent risk factor for gestational hypertension, gestational diabetes, preterm labor, and small- and large-for-gestational-age infants. J Matern Fetal Neonatal Med 2015;28:1679-86.
25. Sibai BM, Caritis SN, Hauth JC, MacPherson C, VanDorsten JP, Klebanoff M, et al. Preterm delivery in women with pregestational diabetes mellitus or chronic hypertension relative to women with uncomplicated pregnancies. The National institute of Child health and Human Development Maternal-Fetal Medicine Units Network. Am J Obstet Gynecol 2000;183:1520-4.
26. Hedderson MM, Ferrara A, Sacks DA. Gestational diabetes mellitus and lesser degrees of pregnancy hyperglycemia: association with increased risk of spontaneous preterm birth. Obstet Gynecol 2003;102:850-6.
27. Zhang J, Villar J, Sun W, Merialdi M, Abdel-Aleem H, Mathai M, et al. Blood pressure dynamics during pregnancy and spontaneous preterm birth. Am J Obstet Gynecol 2007;197:162e1-6.
29. Society for Maternal-Fetal Medicine (SMFM), McIntosh J, Feltovich H, Berghella V, Manuck T. The role of routine cervical length screening in selected high- and low-risk women for preterm birth prevention. Am J Obstet Gynecol 2016;215:B2-7.
30. Berghella V, Pereira L, Gariepy A, Simonazzi G. Prior cone biopsy: prediction of preterm birth by cervical ultrasound. Am J Obstet Gynecol 2004;191:1393-7.
31. Bevis KS, Biggio JR. Cervical conization and the risk of preterm delivery. Am J Obstet Gynecol 2011;205:19-27.
32. Pinborg A, Ortoft G, Loft A, Rasmussen SC, Ingerslev HJ. Cervical conization doubles the risk of preterm and very preterm birth in assisted reproductive technology twin pregnancies. Hum Reprod 2015;30:197-204.
35. Puertas A, Magan-Fernandez A, Blanc V, Revelles L, O’Valle F, Pozo E, et al. Association of periodontitis with preterm birth and low birth weight: a comprehensive review. J Matern Fetal Neonatal Med 2018;31:597-602.
36. Vakil N, van Zanten SV, Kahrilas P, Dent J, Jones R; Global Consensus Group. The Montreal definition and classification of gastroesophageal reflux disease: a global evidence-based consensus. Am J Gastroenterol 2006 101:1900-20. quiz 1943.
37. Patrick L. Gastroesophageal reflux disease (GERD): a review of conventional and alternative treatments. Altern Med Rev 2011;16:116-33.
38. Vinesh E, Masthan K, Kumar MS, Jeyapriya SM, Babu A, Thinakaran M. A clinicopathologic study of oral changes in gastroesophageal reflux disease, gastritis, and ulcerative colitis. J Contemp Dent Pract 2016;17:943-7.
40. Ali RA, Egan LJ. Gastroesophageal reflux disease in pregnancy. Best Pract Res Clin Gastroenterol 2007;21:793-806.
43. Sadi-Ahmed N, Kacha B, Taleb H, Kedir-Talha M. Relevant features selection for automatic prediction of preterm deliveries from pregnancy ElectroHysterograhic (EHG) records. J Med Syst 2017;41:204.
44. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. Siem Reap 2018;1:1097-105.
47. Grigorescu I, Cordero-Grande L, Edwards AD, Hajnal J, Modat M, Deprez M. Interpretable convolutional neural networks for preterm birth classification [Internet]. arXiv.org c2019 [cited 2021 Jun 15]. Available from:
https://arxiv.org/abs/1910.00071
.
49. Fung R, Villar J, Dashti A, Ismail LC, Staines-Urias E, Ohuma EO, et al. Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study. Lancet Digit Health 2020;2:e368-75.
50. Signorini MG, Pini N, Malovini A, Bellazzi R, Magenes G. Integrating machine learning techniques and physiology based heart rate features for antepartum fetal monitoring. Comput Methods Programs Biomed 2020;185:105015.
53. Sridar P, Kumar A, Quinton A, Nanan R, Kim J, Krishnakumar R. Decision fusion-based fetal ultrasound image plane classification using convolutional neural networks. Ultrasound Med Biol 2019;45:1259-73.
55. Asali A, Ravid D, Shalev H, David L, Yogev E, Yogev SS, et al. Intrahepatic cholestasis of pregnancy: machine-learning algorithm to predict elevated bile acid based on clinical and laboratory data. Arch Gynecol Obstet 2021;304:641-7.
56. Betts KS, Kisely S, Alati R. Predicting common maternal postpartum complications: leveraging health administrative data and machine learning. BJOG 2019;126:702-9.
57. Tsur A, Batsry L, Toussia-Cohen S, Rosenstein MG, Barak O, Brezinov Y, et al. Development and validation of a machine-learning model for prediction of shoulder dystocia. Ultrasound Obstet Gynecol 2020;56:588-96.
58. Guedalia J, Sompolinsky Y, Novoselsky Persky M, Cohen SM, Kabiri D, Yagel S, et al. Prediction of severe adverse neonatal outcomes at the second stage of labour using machine learning: a retrospective cohort study. BJOG 2021;128:1824-32.
59. Guedalia J, Lipschuetz M, Novoselsky-Persky M, Cohen SM, Rottenstreich A, Levin G, et al. Real-time data analysis using a machine learning model significantly improves prediction of successful vaginal deliveries. Am J Obstet Gynecol 2020;223:437.e1-437.e15..
60. Meyer R, Hendin N, Zamir M, Mor N, Levin G, Sivan E, et al. Implementation of machine learning models for the prediction of vaginal birth after cesarean delivery. J Matern Fetal Neonatal Med 2020 Oct 25 [Epub].
https://doi.org/10.1080/14767058.2020.1837769
.
61. Liu LC, Tsai YH, Chou YC, Jheng YC, Lin CK, Lyu NY, et al. Concordance analysis of intrapartum cardiotocography between physicians and artificial intelligence-based technique using modified one-dimensional fully convolutional networks. J Chin Med Assoc 2021;84:158-64.
62. Zhong W, Liao L, Guo X, Wang G. A deep learning approach for fetal QRS complex detection. Physiol Meas 2018;39:045004.
64. Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B. Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 2020;47:363-72.
65. Miyagi Y, Hata T, Bouno S, Koyanagi A, Miyake T. Recognition of facial expression of fetuses by artificial intelligence (AI). J Perinat Med 2021;49:596-603.
66. Beksaç MS, Durak B, Ozkan O, Cakar AN, Balci S, Karakaş U, et al. An artificial intelligent diagnostic system with neural networks to determine genetical disorders and fetal health by using maternal serum markers. Eur J Obstet Gynecol Reprod Biol 1995;59:131-6.
67. Kojita Y, Matsuo H, Kanda T, Nishio M, Sofue K, Nogami M, et al. Deep learning model for predicting gestational age after the first trimester using fetal MRI. Eur Radiol 2021;31:3775-82.
68. Torrents-Barrena J, Monill N, Piella G, Gratacós E, Eixarch E, Ceresa M, et al. Assessment of radiomics and deep learning for the segmentation of fetal and maternal anatomy in magnetic resonance imaging and ultrasound. Acad Radiol 2021;28:173-88.
70. Morris SA, Lopez KN. Deep learning for detecting congenital heart disease in the fetus. Nat Med 2021;27:764-5.
71. Gnanadass I. Prediction of gestational diabetes by machine learning algorithms. IEEE Potentials 2020;39:32-7.
72. Wu YT, Zhang CJ, Mol BW, Kawai A, Li C, Chen L, et al. Early prediction of gestational diabetes mellitus in the Chinese population via advanced machine learning. J Clin Endocrinol Metab 2021;106:e1191-205.
73. Hoffman MK, Ma N, Roberts A. A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy. Am J Obstet Gynecol MFM 2021;3:100250.
75. Akazawa M, Hashimoto K, Noda K, Yoshida K. The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study. Obstet Gynecol Sci 2021;64:266-73.