Artificial intelligence in obstetrics
Ki Hoon Ahn, Kwang-Sig Lee
Obstet Gynecol Sci. 2022;65(2):113-124.   Published online 2021 Dec 15     DOI:
Citations to this article as recorded by Crossref logo
Artificial intelligence as a new answer to old challenges in maternal-fetal medicine and obstetrics
Edin Medjedovic, Milan Stanojevic, Sabaheta Jonuzovic-Prosic, Emina Ribic, Zijo Begic, Anis Cerovac, Almir Badnjevic
Technology and Health Care.2024; 32(3): 1273.     CrossRef
A Multiplanar Radiomics Model Based on Cranial Ultrasound to Predict the White Matter Injury in Premature Infants and an Analysis of its Correlation With Neurodevelopment
Ting Zhu, Shuang Zhang, Wei Jiang, Dan Chai, Jiaoyu Mao, Yuya Wei, Jiayu Xiong
Journal of Ultrasound in Medicine.2024; 43(5): 899.     CrossRef
How automated techniques ease functional assessment of the fetal heart: Applicability of two‐dimensional speckle‐tracking echocardiography for comprehensive analysis of global and segmental cardiac deformation using fetalHQ®
Jann Lennard Scharf, Christoph Dracopoulos, Michael Gembicki, Achim Rody, Amrei Welp, Jan Weichert
Echocardiography.2024;[Epub]     CrossRef
Potential applications of Chat Generative Pre-trained Transformer in obstetrics and gynecology: comment
Hinpetch Daungsupawong, Viroj Wiwanitkit
Obstetrics & Gynecology Science.2024; 67(3): 341.     CrossRef
A Theoretical Exploration of Artificial Intelligence’s Impact on Feto-Maternal Health from Conception to Delivery
Ishfaq Yaseen, Riyaz Rather
International Journal of Women's Health.2024; Volume 16: 903.     CrossRef
How Automated Techniques Ease Functional Assessment of the Fetal Heart: Applicability of MPI+™ for Direct Quantification of the Modified Myocardial Performance Index
Jann Lennard Scharf, Christoph Dracopoulos, Michael Gembicki, Amrei Welp, Jan Weichert
Diagnostics.2023; 13(10): 1705.     CrossRef
Machine learning and disease prediction in obstetrics
Zara Arain, Stamatina Iliodromiti, Gregory Slabaugh, Anna L. David, Tina T. Chowdhury
Current Research in Physiology.2023; 6: 100099.     CrossRef
Predicting a clinically narrow pelvis using neural network data analysis
A. M. Ziganshin, G. B. Dikke, V. A. Mudrov
Obstetrics, Gynecology and Reproduction.2023; 17(2): 211.     CrossRef
A research study on the cervical cerclage to deal with cervical insufficiency using machine learning
Mandeep Kaur, Ganesh Khedkar, Sachin Sakhare, Katarina Rogulj
Soft Computing.2023;[Epub]     CrossRef
Electrocardiogram-based deep learning model to screen peripartum cardiomyopathy
Young Mi Jung, Sora Kang, Jeong Min Son, Hak Seung Lee, Ga In Han, Ah-Hyun Yoo, Joon-myoung Kwon, Chan-Wook Park, Joong Shin Park, Jong Kwan Jun, Min Sung Lee, Seung Mi Lee
American Journal of Obstetrics & Gynecology MFM.2023; 5(12): 101184.     CrossRef
A deep learning mixed-data type approach for the classification of FHR signals
Edoardo Spairani, Beniamino Daniele, Maria Gabriella Signorini, Giovanni Magenes
Frontiers in Bioengineering and Biotechnology.2022;[Epub]     CrossRef
Vorteile der KI-gestützten geburtshilflichen Überwachung
O. Graupner, C. Enzensberger
Die Gynäkologie.2022; 55(10): 740.     CrossRef
Aktuelle Aspekte zur künstlichen Intelligenz in der gynäkologischen Diagnostik
Jann Lennard Scharf, Christoph Dracopoulos, Michael Gembicki, Amrei Welp, Jan Weichert
Die Gynäkologie.2022; 55(10): 759.     CrossRef